
Displaying Data:
Overview of the
“VCS” module

History of the VCS module

• A long long time ago, PCMDI developed the
Visualization Control System (VCS), a motif-based
GUI to read, display and perform some computation
on climate model output.

• PCMDI’s mission broadened and we began creating
the Climate Data Diagnosis Tools (CDAT) to further
enable the climate community to manipulate climate
data.

• Naturally VCS was embedded into CDAT as the
“natural” module to display Numerical arrays.

• Only 1D or 2D can be represented via VCS, and it is
mostly designed for 2D graphics.

VCS Concepts and Terminology

• In order to use the VCS properly and efficiently
module it is important to understand its basic
concepts:

• Data and other graphic object are drawn on a “VCS
Canvas”.

• The way data are represented is controlled via
“Graphic Methods”. For example “boxfill”, “isofill”,
“isoline”, “vector”, etc…

• The location where things are drawn (data, legend,
title, comments, units, etc..) is determined via
“Templates”

• Additional elements can be drawn using “Primitives”
(lines, polygons, text, markers, etc…)

VCS Concepts and Terminology

• VCS canvas needs to be initialized (created)
x=vcs.init() # without any arguments

• You can manage create up 8 Canvas at once, when
not needed a canvas should be closed:
x.close() # without any arguments, nothing returned

• Think of Canvas as “magic board” once you finished
your plot you can simply “clean” (or erase) it, there is
no need to create a new canvas
x.clear() # without any arguments, nothing returned

VCS Concepts and Terminology

• Via templates (see later) you can have multiple plots
on a single Canvas.

• By default data will be plotted on the “default”
template using the “default” “boxfill” graphic method
(for 2d data) or the “default” “yxvsx” graphic method
(for 1d data)
x.plot(data)
data is usually a transient variable, but could be a Numeric

array, MA or even a python list.

Setting up VCS

• VCS (and VCDAT) settings
are stored under your $HOME directory under in the
PCMDI_GRAPHIC directory. Important files are:
– initial.attributes : It contains all predefined template and

graphic methods, you can add your own…
– HARD_COPY # printers definitions file
– vcdat_initial.py # your vcdat default settings
– vcdat_teaching_script_file.py and

vcdat_recording_script_file.py VCDAT session
files to review your last work in VCDAT

• If not present these files will be created as needed

VCS First Help (1)

• Basic help on VCS can be obtain inline via: vcs.help()
• This will list available function in vcs, notably functions to

create/get/query vcs objects, extract of the help:

--- VCS Canvas Functions ---
Plotting: plot boxfill continents isofill isoline meshfill

outfill outline scatter vector xvsy
xyvsy yxvsx

Querying: isboxfill iscolormap iscontinents isfillarea isgraphicsmethod
isisofill isisoline isline ismarker ismeshfill isoutfill
isoutline isplot isprojection isscatter issecondaryobject
istemplate istextcombined istextorientation istexttable isvector
isxvsy isplot islandscape isportrait

Creating: createboxfill createcolormap createcontinents createfillarea
createisofill createisoline createline createmeshfill
createmarker createoutfill createoutline createprojection
createscatter createtemplate createtextcombined
createtextorientation createtexttable createvector createxvsy
createxyvsy createyxvsx

VCS First Help (2)

Getting: getboxfill getcolorcell getcolormap getcolormapname getcolors
getcontinents getcontinentstype getfillarea getisofill getisoline
getline getmeshfill getmarker getoutfill getoutline
getplot getprojection getscatter gettemplate gettextcombined
gettextorientation gettexttable getvector getxvsy getxyvsy
getyxvsx

Removing: removeobject

Scripting: scriptobject scriptrun scriptstate saveinitialfile

Operating: animate cgm clear close colormapgui eps flush geometry
gif graphicsmethodtype gs help init landscape listelements
mkevenlevels mklabels mkscale mode objecthelp open orientation
page pause portrait postscript printer pstogif raster set
setcolorcell setcolormap setcontinentstype show update vcsError

VCS First Help

This also can be used to get help on a specific command:

vcs.help(‘createboxfill’)

Function: createboxfill # Construct a new boxfill graphics method

Description of Function:
Create a new boxfill graphics method given the the name and the existing
boxfill graphics method to copy the attributes from. If no existing
boxfill graphics method name is given, then the default boxfill graphics
method will be used as the graphics method to which the attributes will
be copied from.

If the name provided already exists, then a error will be returned. Graphics
method names must be unique.

Graphic Methods Concepts (1)

• Essentially a graphic method represents HOW data
are going to be plotted (the WHERE will be
determined via templates, see later)

• There are 12 type of graphic methods in VCS:
– 2D Graphic Methods

• Boxfill, Isofill, Isoline, Meshfill, Vector, Outfill, Outline,
Continents , (Taylordiagrams ?)

– 1D Graphic Methods
• Yxvsx, Xyvsy, XvsY, Scatter

• A graphic method object is created from a canvas
object using one of the “create” functions, for
example for a boxfill:
– gm = x.createboxfill(‘name’)

Graphic Methods Concepts (2)

• “boxfill” should be replaced appropriately with one of
the 12 valid types, the ‘name’ must be unique to this
type (remember the initial.attribute contains your
predefined vcs objects).

• If a graphic method already exists, an error will be
generated if you try to “re”create it, but it can be
retrieved using one of the “get” functions:
– gm = x.getboxfill(‘name’)

• Again boxfill should be replaced with appropriate
name

• gm can then be used to plot our data:
– x.plot(data,gm)

Graphic Methods Concepts (3)

• Although there are 12 types of graphic method,
each graphic method object has a set of attributes
that will control it (for example isoline graphic
methods have a level attribute which controls which
isocontours to draw). Therefore you can have
multiple vcs graphic method object of the same type,
but all representing data differently. An isoline
graphic method with a projection attribute set to
“default” (normal lat/lon plot) will be drastically
different from one with this attribute set to “polar”

Graphic Methods Concepts (4)

• Graphic method object attributes can be listed using their own
list command. All vcs object have a list command
– gm.list()

• The following attributes are common to all graphic methods
object:
– datawc_x1 : data 1st world coordinate on X axis
– datawc_x2 : data 2nd world coordinate on X axis
– datawc_y1 : data 1st world coordinate on Y axis
– datawc_y2 : data 2nd world coordinate on Y axis
– xticlabels1: labels to use for first set of labels on X axis
– Same for 2nd set and Y axis (e.g yticlabels2)
– xmtics1: location to use for first set of intermediate tic marks on X axis
– Same for 2nd set and y axis (e.g ymtics2)

• datawc attributes take floats as values
• “tic” attributes take dictionaries as attribute (or ‘*’ for automatic)

2D - “boxfill”

• The boxfill graphic method takes a 2D array and
represents it by filling a “box” (determined by the
bounds on each axis values) with a color linked to the
array’s value at this location:

b=x.createboxfill(‘new’)
x.plot(data,b)

2D - “boxfill”, attributes

• b.list()
----------Boxfill (Gfb) member (attribute) listings ----------
Canvas Mode = 1
graphics method = Gfb # indicates the graphic method type: Graphic Filled Boxes (Gfb)
name = new # Name of the specific graphic method
projection = linear # projection to use (see projection section)
xticlabels1 = * # 1st set of tic labels, ‘*’ means ‘automatic’
xticlabels2 = * # 2nd set of labels (pos determined by template)
xmtics1 = # 1st set of sub ti for details)
xmtics2 =
yticlabels1 = *
yticlabels2 = *
ymtics1 =
ymtics2 =
datawc_x1 = 1.00000002004e+20 # world coordinate of 1st x in data area , 1.E20 means auto
datawc_y1 = 1.00000002004e+20
datawc_x2 = 1.00000002004e+20
datawc_y2 = 1.00000002004e+20
xaxisconvert = linear # Possible conversion of X axis , linear, log, area weighted
yaxisconvert = linear # same for Y
boxfill_type = linear # Type of boxfill method can be linear, log10 or custom (see later)
level_1 = 1.00000002004e+20 # First Numeric value in the array to represent (for linar and log10 type)
level_2 = 1.00000002004e+20 # second one
levels = ([1.0000000200408773e+20, 1.0000000200408773e+20],) # Levels of num values to repr in custom mode
color_1 = 16 # first color to use (for lin and log10)
color_2 = 239 # last color to use
fillareacolors = None # Colors to associate with aach levels section
legend = None # Dictionary of values/text pair to put on the legend bar
ext_1 = n # draw extension arow before fisr value/segm
ext_2 = n # extension arrow after last num value/segment
missing = 241 # color to use for missing values

Levels/Color association

{

{
{
{

{

{
{
{

{

{

Generic Info

Projection

Labels and Ticks

World Coordinates

Axes transformation

Levels

Colors

Legend

Missing Values

2D - create vs get

• Let’s a create a new VCS boxfill graphic method
• b = x.createboxfill(‘new’)
• The new graphic method object has been created using the

“default” values, if you’d like to use an already existing boxfill
graphic method as a starting point for your new boxfill method,
you can pass its name when creating it:

• b2 = x.createboxfill(‘new2’,’new’)

WARNING:
b2 = x.getboxfill(‘new’) is different, modification to b2 will also
modify b or any other instance of “new”. Therefore it is NOT
recommended to have 2 python instances of the same vcs
object, and it should be avoided at all cost. The get functions
should only be used to retrieve an object from the vcs memory if
NOT already in Python.

2D - Preliminaries

• The following will be assumed to be typed before each section
import sys, cdms,vcs
f=cdms.open(sys.prefix+’/sample_data/clt.nc’)
data=f(‘clt’) # 3D data
b=x.createboxfill(‘new’)

• Now note that although data is 3D it can still be passed to the
plot function. VCS will use the first index of every leading
dimension until it gets a 2D array. Therefore:

x.plot(data,b)
– Is equivalent to:

x.plot(data[0],b)

2D - World Coordinates

• The worldcoordinate attributes are present on all graphic
methods, our “data” sample is global now let’s assume we’re
interested in a subset area, instead of reading the data over a
subset we can simply tell vcs to represent data only over this
area, for example to visualize Africa:

b.datawc_x1 = -45.
b.datawc_x2 = 70.
b.datawc_y1 = -38.
b.datawc_y2 = 38.

x.plot(s,b)

2D - Controlling ratio

• Note that altering the worldcoordinate may lead to distorted aspect
ratio, we’ll see later that this can be corrected by acting on the
“template”, but an easier way to do this is to use the “ratio” keyword.

• “ratio” controls the Y ratio relative to X
• ratio=2 means Y will be twice X
• Now, for data with spatial grids, the
‘auto’ value can be passed.
• If you also want to move the box and
tick marks simply add ‘t’ at the end

x.plot(data,b,ratio=2) x.plot(data,b,ratio=‘auto’) x.plot(data,b,ratio=‘autot’)

2D - Controlling Labels and Tick Marks

• Labels can be controlled via dictionaries of location/text
• For example

Lons={ -180:’180W’, -90:’90W’,0,’Greenwich’,90:’90E’,180:’180E’}
Lats1={-90:’90S’,-30:’30S’,0:’Eq’,30:’30N’,90:’90N’}
Lats2={-23.5:’Tropic of Capricorn’,23.5:’Tropic of Cancer’}
b.xticlabels1=Lons
b.yticlabels1=Lats1
b.ymtics1=Lats2
x.plot(data,b)

• Note that although there is text
associated with them, no labels
are written next to the ‘Tropics’,
since they have been associated
to the sub tick marks (ymtics1),
and also that the length of these
ticks is different from the length
of the main tics (yticlabels1)

2D - Axes Transformation (1)

• Sometimes you need to apply a transformation on
axes, vcs allows you to apply an “area-weighted”,”ln”,
“log10”, or “exp” transformation, on the fly.

• Note that labels must then be in the units.

• Let’s use another dataset for this case…

2D - Axes Transformation (2)

import sys
f=cdms.open(sys.prefix+'/sample_data/ta_ncep_87-6-88-4.nc')
data2=f('ta',time=slice(0,1),squeeze=1)
data2=MV.average(data,-1) # we now have level/lat data
b=x.createboxfill(‘new’)
x.plot(data2,b)
b.xaxisconvert=‘area_wt’ # Area weighted representation of latitudes
b.yaxisconvert=‘log10’ # Log of P representation of Pressure dim
x.plot(data2,b)

2D - “linear” boxfill_type

• The default boxfill type “linear”, represents grid cells whose values are between
the “level1” and “level2” attributes. The color range used to do this are the colors
comprised between the “color1” and “color2” attributes, therefore determining how
many sub intervals will be used (10 colors meaning 10 segments)

b.color1=10
b.color2=19
b.level1=40
b.level2=60
x.plot(data,b)

• Note that only grid cell whose values are between 40 and 60 are plotted
• Unfortunately, color 10 to 19 are very similar and therefore a need for a new

colormap arises….

2D – Colormaps (1)

• Colormap in VCS consist of 256 colors

• Each colormap has a unique name associated with itself

• VCS is currently limited to ONE colormap at a time, but if you
clear your plot, you can use mutliple colormap during the same
session

• Creating and setting a colormap:
x.createcolormap(‘new’)
x.setcolormap(‘new’)

2D – Colormaps (2)

• At this point, since VCS has only 1 colormap you can set/get
colorcell values directly from the Canvas object

Col10=x.getcolorcell(10) # (70,1,99)

• The values returned are RGB values between 0 and 100

• Setting a colorcell is done the same way
– X.setcolorcell(10,100,0,0) # Sets color 10 to RED

• Note the existence of the colors “sub” module inside genutil
– r,g,b=genutil.colors.str2rgb(‘red’) # Returns (255,0,0)
– WARNING: Value of rgb are in between 0 and 255 in this
– Name=genutil.colors.rgb2str(255,0,0)

• Manipulating colors is much easier from the VCDAT GUI, we
strongly recommend to use it to create/edit your colormap, save
them to a file or the initial.attributes and then read them in your
scripts.

2D - Colormaps from VCDAT

• Colormap GUI let you easily pick/change colors and color model

2D - “log10” boxfill_type

• The boxfill type “log10”, represents grid cells whose values are
between the “level1” and “level2” attributes.

• The color range used to do this are the colors comprised
between the “color1” and “color2” attributes, therefore
determining how many sub intervals will be used (10 colors
meaning 10 segments).

• The difference with “linear” is that a log10 is applied on the data
before plotting.

2D - “custom” boxfill_type

• The boxfill type “custom”, allows the user to pick the levels interval to use to
represent data and the colors associated with each interval.

• Intervals are set via the “levels” attribute:
– b.boxfill_type=‘custom’
– b.levels = [0, 25, 50, 75, 100]

• Will represent data into 4 intervals: [0,25], [25,50], [50,75], [75,100]
• Interval length can vary:

– b.levels = [0, 20, 60, 70, 100]
• Each interval color can be set via the “fillareacolors” attribute

– b.fillareacolors = [16, 90, 150, 242]

2D - dealing with colors

• Due to the nature of vcs (one colormap) “picking” colors along a
colormap can be really painful. Fortunately some vcs built-in
functions can help with dealing with levels and colors.

• To automatically pick colors along a range of colors use:
– vcs.getcolors(levs,colors=range(16,240,split=1,white=240))
– colors: can be an list/tuple of numbers
– split: determine if the colors should be split in 2 part, the first part to

be used for intervals before values switch from >0 to <0 or <0 to >0,
the second part for the other intervals

– white is used in correlation with split, if an interval goes from <0 to
>0 or vice-versa, then this color value is used.

• See doc string for more info.

2D - dealing with levels (1)

• To produce “nlevs” EVEN intervals the first one
starting at v1, the last one ending at v2 use:
– vcs.mkevenlevels(v1,v2,nlevs=10) # Produce “nlevs” EVEN

intervals the first one starting at v1, the last one ending at v2
• To produce an automatic “nice” scale for data range

going from min to max use:
– vcs.mkscale(min,max,nc=12,zero=1)
– Optional Arguments are:

– nc : Maximum number of intervals (default 12)
– zero = -1/1/2 (default is 1)

-1: zero MUST NOT be a contour
1: zero CAN be a contour (default)
2: zero MUST be a contour

2D - dealing with levels (2)

• When dealing with “big” or “small” values it is
sometimes nice to use labeled values, e.g 0.0000001
be drawn as: 1.E-7
– vcs.mklabels([.0000001]) # {9.9999999999999995e-08: '1E-

7'}
– Returns a dictionary of pair : value/”nice”string that can be

passed to xticlabels1, etc…

2D - boxfill: legend

• If you chose “linear” or “log10” for the “boxfill_type”,
the legend labels can be controlled via the “legend”
attribute.

• The “legend” attribute takes a dictionary of value/text
pairs

Leg={0 : “Sunny” , 25: “Nice Day”, 50: “Cloudy” 75: “Bad
Weather”, 100: “Storm”}

b.legend=Leg

2D -“isofill”

• Isofill graphic methods draws filled isocontour
• They are extremely similar to boxfill “custom” type
• Known Limitation:

– No control on labels position
– No control on isolines “Smoothness”

• iso=x.createisofill(‘new’)

2D -“isofill”, attributes

• iso.list()
----------Isofill (Gfi) member (attribute) listings ----------
Canvas Mode = 1
graphics method = Gfi # indicates the graphic method type: Graphic Isofill (Gfi)
name = new # Name of the specific graphic method
projection = linear # projection to use (see projection section)
xticlabels1 = * # 1st set of tic labels, ‘*’ means ‘automatic’
xticlabels2 = * # 2nd set of labels (pos determined by template)
xmtics1 = # 1st set of sub ti for details)
xmtics2 =
yticlabels1 = *
yticlabels2 = *
ymtics1 =
ymtics2 =
datawc_x1 = 1.00000002004e+20 # world coordinate of 1st x in data area , 1.E20 means auto
datawc_y1 = 1.00000002004e+20
datawc_x2 = 1.00000002004e+20
datawc_y2 = 1.00000002004e+20
xaxisconvert = linear # Possible conversion of X axis , linear, log, area weighted
yaxisconvert = linear # same for Y
missing = 241 # color to use for missing values
ext_1 = n # draw extension arow before fisr value/segm
ext_2 = n # extension arrow after last num value/segment
fillareastyle = None # Colors to associate with aach levels section
fillareaindices = None # Colors to associate with aach levels section
fillareacolors = None # Colors to associate with aach levels section
levels = ([1.0000000200408773e+20, 1.0000000200408773e+20],) # Levels of num values to repr in custom mode
legend = None # Dictionary of values/text pair to put on the legend bar

{

{
{
{

{

{
{

Generic Info

Projection

Labels and Ticks

World Coordinates

Axes transformation

Colors

2D -“isofill”, attributes

• As in boxfill “custom” type:
– “levels” controls the intervals
– “fillareacolors” controls the colors
– “ext_1” and “ext_2” control the extension arrows

• As in boxfill “linear” type
– Legend controls the legend labels

2D - “isoline”

• Isoline, draws isocontours, color, style, can be
controlled.

• Limitation:
– No control on the labels location
– No control of “smoothness”

• iso=x.createisoline(‘new’)

2D - “isoline”, attributes

• iso.list()
----------Isofill (Gfi) member (attribute) listings ----------
Canvas Mode = 1
graphics method = Gfi # indicates the graphic method type: Graphic Isofill (Gfi)
name = new # Name of the specific graphic method
projection = linear # projection to use (see projection section)
xticlabels1 = * # 1st set of tic labels, ‘*’ means ‘automatic’
xticlabels2 = * # 2nd set of labels (pos determined by template)
xmtics1 = # 1st set of sub ti for details)
xmtics2 =
yticlabels1 = *
yticlabels2 = *
ymtics1 =
ymtics2 =
datawc_x1 = 1.00000002004e+20 # world coordinate of 1st x in data area , 1.E20 means auto
datawc_y1 = 1.00000002004e+20
datawc_x2 = 1.00000002004e+20
datawc_y2 = 1.00000002004e+20
xaxisconvert = linear # Possible conversion of X axis , linear, log, area weighted
yaxisconvert = linear # same for Y
label = ‘n’
line = [‘solid’]
Linecolors = [241]
Linewidths = [1.0]

text = None
textcolors = None

level = [[0. , 1.e20]]

{

{
{
{

{

{

Generic Info

Projection

Labels and Ticks

World Coordinates

Axes transformation

Isolines definition

{Labels definition

2D - “isoline”, controlling levels

• Isocontours are controlled with the “level” (or “levels”) attribute
• iso.level= [0 , 25 ,50 ,75, 100]

• Isocontour “aspect” are controlled via:
iso.line # list of line types “solid”, “dash”, “dot”, “dash-dot”, “long-dash”
iso.linecolors # list of colors for each isocontour
Iso.linewidths # list of numbers representing the “thickness” of each contour

• Example
Levels= [0, 25, 50, 75, 100]
vcs.getcolors works on intervals, we need to add one number at the end of levels…
colors=vcs.getcolors(Levels+[2,])
iso.levels=Levels
iso.linecolors=colors
iso.line = [‘dot’,’dot’,’solid’,’dash’,’dash’]

• Warning:
Line styles aren’t always converted
back to pcm/postscript, it’s a known
bug.

2D - “isoline”, controlling labels

• Isocontours labels are controlled via the “label”
attribute

• The text attribute allows you to change the font type
• The textcolor attribute allows you to control the color

of the labels
• More elaborate control is permitted by passing “VCS

text objects” to the text attribute (more later on text
objects)

• Example:
– tt=x.createtext(‘new’)
– tt=x.label=‘y’
– tt.angle=-45
– tt.color=242
– iso.text=[tt,tt,tt,tt,tt]

2D – “meshfill”

• Meshfill is similar to boxfill “custom” but allows
representation of generalized grids, i.e. instead of
filling a box, “meshfill” fills cells, of “n” points

• Therefore Meshfill requires an additional array to be
passed. This array represents the “mesh”

• This array is generated automatically for Transient
Variables recognized by cdms.

• Meshfill allows very creative 2D plots, as long as you
know how to generate the “mesh” array. Each cell
does not have to have the same number of point.

2D - “meshfill”

• Let’s open an example of “generalized grid” file
import sys
f=cdms.open(sys.prefix+'/sample_data/sampleGenGrid3.nc')
data=f('sample') # data shape (2562,)
x.plot(data) # VCS knows automatically to use meshfill
m=x.createmeshfill(‘new’)

• Getting the “mesh” array
– Grid=data.getGrid()
– Mesh = Grid.getMesh()
– print Mesh.shape # (2562, 2, 6)

2D - “meshfill” - Description of the “Mesh Array”

• The mesh description is an array, its form is:
(nelements,2,nvertices) where:
– ncell represents the number of elements constituting the

mesh.
– 2: represent the Y and X spatial dimension
– nvertices: represent the number of vertices of each mesh

element

• Note: if your mesh does not have the same number
of vertices per element, then nvertices should be the
maximum number of vertices that an element can
have, and unused values of vertices should then be
set to missing (1.E20 for a Numeric object, or via
associated mask for MA and MV)

2D – “meshfill” - Description of the “Mesh Array”

Let’s use for example a mesh constituted of 100 quadrilaterals (or elements).
The mesh array (M) should be dimensioned : (100,2,4)
Now let’s look at how the mesh for the ith quadrilateral (element) (figure 1)

Figure 1 : ith element of data and mesh Figure 2: misordered mesh elements

For the ith element the the data array (A[i]), the mesh element m=M[i] is 2 dimensional
m[0] has a length of 4 and represents the Y values of the vertices CONSECUTIVELY
m[1] has a length of 4 and represents the X values of the vertices CONSECUTIVELY

From figure 1: M[i,0]=[Yi1,Yi2,Yi3,Yi4] and M[i,1]=[Xi1,Xi2,Xi3,Xi4]

Note: It is fundamental that the vertices are stored consecutively, the direction does not
matter, see figure 2 for an example of bad storage

2D - “meshfill”, attributes

• m.list()
----------Isofill (Gmi) member (attribute) listings ----------
Canvas Mode = 1
graphics method = Gfm # indicates the graphic method type: Graphic Meshfill (Gfm)
name = new # Name of the specific graphic method
projection = linear # projection to use (see projection section)
xticlabels1 = * # 1st set of tic labels, ‘*’ means ‘automatic’
xticlabels2 = * # 2nd set of labels (pos determined by template)
xmtics1 = # 1st set of sub ti for details)
xmtics2 =
yticlabels1 = *
yticlabels2 = *
ymtics1 =
ymtics2 =
datawc_x1 = 1.00000002004e+20 # world coordinate of 1st x in data area , 1.E20 means auto
datawc_y1 = 1.00000002004e+20
datawc_x2 = 1.00000002004e+20
datawc_y2 = 1.00000002004e+20
xaxisconvert = linear # Possible conversion of X axis , linear, log, area weighted
yaxisconvert = linear # same for Y
levels = ([1.0000000200408773e+20, 1.0000000200408773e+20],) # Levels of num values to repr in custom mode
fillareacolors = None # Colors to associate with aach levels section
fillareastyle = None # Colors to associate with aach levels section
fillareaindices = None # Colors to associate with aach levels section
legend = None # Dictionary of values/text pair to put on the legend bar
missing = 241 # color to use for missing values
ext_1 = n # draw extension arow before fisr value/segm
ext_2 = n # extension arrow after last num value/segment
mesh = 0
wrap = [0.0, 0.0]

{

{
{
{

{

Generic Info

Projection

Labels and Ticks

World Coordinates

Axes transformation

{Levels & colors

2D - “meshfill”, attributes

• Levels/ Colors, etc… are controlled the same way
than isofill

• New attributes are:
– mesh: Draws the mesh if set to 1

– wrap: Specifies the wrapping value in each x/y dimension

2D - “vector”

• The “Vector” graphic method represents the
combination of 2 arrays, via “vector” the first array
representing the “X” axis component and the second
array representing the “Y” axis component.

• In the same “clt.nc” sample file we can retrieve 2
fields “u” and “v” and use them to draw wind fields.

f=cdms.open(sys.prefix+’/sample_data/clt.bc’)
u=f(‘u’)
v=f(‘v’)
vec=x.createvector(‘new’)
x.plot(u,v,vec)

2D - “vector”, attributes

• vec.list()
----------Isofill (vi) member (attribute) listings ----------
Canvas Mode = 1
graphics method = Gv # indicates the graphic method type: Graphic Vector (vi)
name = new # Name of the specific graphic method
projection = linear # projection to use (see projection section)
xticlabels1 = * # 1st set of tic labels, ‘*’ means ‘automatic’
xticlabels2 = * # 2nd set of labels (pos determined by template)
xmtics1 = # 1st set of sub ti for details)
xmtics2 =
yticlabels1 = *
yticlabels2 = *
ymtics1 =
ymtics2 =
datawc_x1 = 1.00000002004e+20 # world coordinate of 1st x in data area , 1.E20 means auto
datawc_y1 = 1.00000002004e+20
datawc_x2 = 1.00000002004e+20
datawc_y2 = 1.00000002004e+20
xaxisconvert = linear # Possible conversion of X axis , linear, log, area weighted
yaxisconvert = linear # same for Y
line = Noe
linecolor = None
linewidth = None
scale = 1.0
alignement = center
type= arrows
reference = 1.E20

{

{
{
{

{

{

Generic Info

Projection

Labels and Ticks

World Coordinates

Axes transformation

Vectors definition

2D - “vector”, attributes

• The vectors line/color/width are defined the same
way isolines are, except the attribute takes only 1
argument not a list.

• Additional definition are:
– reference : Numerical value associated with the “standard”

arrow, if set to 1.E20, then it will be the length of the longest
arrow

– scale: factor to “scale” the “reference” arrow
– type: type of the arrows: “arrows”, “barbs” or “solidarrows”
– alignment: how to align the “arrows” relative to the center of

the cell “head”, “center”, “tail”

1D - “VCS”

• All 1D plots in VCS basically work the same way.
There are 4 types of 1D graphic method, we’ll start
with the basic: Yxvsx, which stands for Y(x) vs x

• This graphic method draws a 1D array (Y) as a
function of its 1D axis (x)

• Example zonal mean of the first time point of our data
array

zm=MV.average(data[0],1) # Zm.shape is (46,)
x.plot(zm) # automatically knows to plot 1D with yxvsx
yx=x.createyxvsx(‘new’)
x.plot(zm,yx) # same

1D - “yxvsx”, attributes

• yx.list()
----------Isofill (Gfi) member (attribute) listings ----------
Canvas Mode = 1
graphics method = Gfi # indicates the graphic method type: Graphic Isofill (Gfi)
name = new # Name of the specific graphic method
projection = linear # projection to use (see projection section)
xticlabels1 = * # 1st set of tic labels, ‘*’ means ‘automatic’
xticlabels2 = * # 2nd set of labels (pos determined by template)
xmtics1 = # 1st set of sub ti for details)
xmtics2 =
yticlabels1 = *
yticlabels2 = *
ymtics1 =
ymtics2 =
datawc_x1 = 1.00000002004e+20 # world coordinate of 1st x in data area , 1.E20 means auto
datawc_y1 = 1.00000002004e+20
datawc_x2 = 1.00000002004e+20
datawc_y2 = 1.00000002004e+20
xaxisconvert = linear # Possible conversion of X axis , linear, log, area weighted
line = None
linecolor = None
linewidth = None
marker = None
markercolor = None
markersize = None

{

{
{

{

{

{

Generic Info

Projection

Labels and Ticks

World Coordinates

Axis transformation

Line definition

Markers definition {

1D - “VCS” Yxvsx attributes

• As in isoline, or vector, line, linecolor, linewidth,
determine the line

• marker, markercolor, markersize, determine the
markers to be drawn

yx.line='dot'
yx.linecolor=242
yx.linewidth=2
yx.marker='star’ # use None for no marker
yx.markercolor=244
yx.markersize=5.

1D - “VCS” Xyvsx, Xvsy, scatter

• Other 1D graphic method, work very similarly
• Xyvsy does the same thing except the X and Y axes are flipped relatively to a

Yxvsx.
• XvsY is the same thing as YxvsX except it takes 2 data array (X and Y) as

arguments, therefore the values on the horizontal axis are not taken from the
“axis” definiton of the Y array but from the values of a first (X) array

• To reproduce the Yxvsx plot we would do:
– ax=zm.getAxis(0)[:]
– xy=x.createxvsy(‘new’)
– x.plot(ax,zm,xy)

• Note that this allows for distortion on both X and Y direction (xaxisconvert and
yaxisconvert)

• Scatter basically works as XvsY except both X and Y MUST have the same
Axis!

• In the previous example we would need to add the following line:
– ax=MV.array(ax)
– ax.setAxis(0,zm.getAxis(0))
– sc=x,createscatter(‘new’)
– x.plot(ax,zm,sc)

VCS Templates - Generalities

• Now that we’ve seen how to display data, it is important to understand the
“templates” concept.

• Template are used to tell VCS “where” to draw objects on the canvas (whereas
Graphic Method would tell “how” to draw them”)

• There’s basically 4 different aspect of the plot that are controlled by the
templates

– Text location for things, like title, comments, name, etc..
– Data area
– Tick marks and labels location
– Legend

• Each element of the template (e.g “data”) can be turned on/off or moved on
top/below other elements on the page via its “priority” attribute

• Template object are created via the “createtemplate” command
t=x.createtemplate(‘new’)

• All elements of a template object can be listed via the list() function
t.list()

• Alternatively, a single elements’s attributes can be listed, e.g.:
t.data.list()

VCS Templates -
Text elements and their sources (1)

• Some text can be automatically displayed on the Canvas, the
values are taken from the slab itself, here is a mapping of
template attribute names and slab names:

title: slab long_name attribute
dataname: slab id attribute
source: slab’s source attribute
file: slab’s filename attribute
logical_mask : ???
function : ???
transformation: ???
units: slab’s units attribute
crdate: If slab has time dimension, then date of the slice plotted
crtime: If slab has time dimension, then time of slice plotted
comment1/2/3/4: slab’s attribute comment1/2/3/4

VCS Templates
Text elements and their sources (2)

• We need to remind here that the x/y/z/t dimension in VCS
correspond to the slab’s -1/-2/-3/-4 dimensions!

– x/y/z/t/name: name of the -1/-2/-3/-4 dimension
– x/y/z/t/units: units for the -1/-2/-3/-4 dimension
– x/y/z/t/value: value for the -1/-2/-3/-4 dimension

(only for dim not plotted as data, e.g. plotting a time/lat/lon slab with
boxfill then tvalue will represent the time plotted, this will change for
each animation frame)

– min/max/mean: min/max/mean of the data plotted
WARNING: These values are for the entire slab passed, e.g datawc
restriction won’t be taken into account here!

VCS Templates
Definition of text elements

• All the elements described before behave the same, let’s look at
the dataname element:
t.dataname.list()
member = dataname

priority = 1
x = 0.0500000007451
y = 0.922999978065
texttable = default
textorientation = default

priority: 0 means off, anything else represent the layer on which to
draw the element, the higher value being drawn on top of lower
values

x/y: x/y location of the element in % of the page !
texttable : vcs texttable element to use (see next slide)
textorientation: vcs textorientation element to use (see next slide)

VCS Templates
Texttable and textorientation (1)

• Textobject in VCS have 2 component a texttable
component and a textorientation element:
– Tt=x.createtexttable(‘new’)
– Tt.list()

----------Text Table (Tt) member (attribute) listings ----------
Canvas Mode = 1
secondary method = Tt
name = new
font = 1
spacing = 2
expansion = 100
color = 1

VCS Templates
Texttable and textorientation (2)

– To=x.createtextorientation(‘new’)
– To.list()

----------Text Orientation (To) member (attribute) listings ----------
Canvas Mode = 1
secondary method = To
name = new
height = 14
angle = 0
path = right # right left,up,down
halign = left # left,center,right
valign = half #top,cap,half,base,bottom

VCS Templates
Controlling ticks and labels (1)

• Tics and labels work similarly on the x and
y axis, we’ll only describe the X axis ones

• T.xlabel1/2 # control the location/aspect of
the labels1/2

– priority
– Y # location of label in % of page
– texttable
– textorientation

• T.xtic1/2 # control the location/aspect of
the labels1/2

– priority
– y1 # start of tic mark in % of page
– y2 # end of tic mark in % of page
– line # vcs line object name (see later)

VCS Templates
Controlling ticks and labels (2)

• T.xmintic1/2 # control the location/aspect of
the labels1/2

– priority
– y1 # start of tic mark in % of page
– y2 # end of tic mark in % of page
– line # vcs line object name (see later)

• Note
– Xtic1 and xlabel1 values are controlled via the

graphic method: xticlabels1
– their “X” locations are determined via the “data”

eleement and domain used

VCS Templates
Controlling legend and data area

• These are controlled via the “data” and “legend”
elements

• The data element simply consist of
– priority
– x1,x2,y1,y2

• Note: data.x1 corresponds to
graphicmethod.datawc_x1

• In addition the “legend” element also has the “line”,
“texttable” and “textorientation” attributes

• Finally the data area is surrounded by the “box1”
element, with the following attributes:
priority,x1,x2,y1,y2,line

• Note that template object have 4 box and 4 line
elements, but beside box1, these are rather obsolete
and primitive objects should be used instead

VCS Templates
Simplifying your life! (1)

• Controlling all the aspect of a template can be really
tedious, it is recommended to set up your template
once, save it and reuse it for ever.

• In order to edit your template once and for all we
recommend to use the VCDAT template editor!

VCS Templates
Simplifying your life! (2)

• Command line manipulation of templates is
also made easier with the following command
which move all elements at once!
– T.move(percent, axis)
– T.moveto(x,y) # move the data.x1,data.x2 corner

to x/y
– T.scale(scale,axis=‘xy’,font=-1) # scale the

template along x,y,xy can also scale fonts
(automatic for xy direction only)

VCS
Extra dimensions/Animation

• Although graphic method
draw only 2D or 1D plots
we’ve seen that we can
pass arrays with extra
dimension, these
dimensions are then used
for the animation.

• Animation are best run via
the VCDAT GUI but can
be controlled from the
command line.

“Secondary” VCS Objects

• Secondary VCS object consist of
– Fillarea : polygons
– Lines
– Text
– Marker

“Secondary” VCS Object: fillarea (1)
----------Fillarea (Tf) member (attribute) listings ----------
Canvas Mode = 0
secondary method = Tf
name = new
style = ['solid']
index = [1]
color = [241]
priority = 1
viewport = [0, 1, 0, 1]
worldcoordinate = [0, 1, 0, 1]
x = None
y = None
projection = default
• Multiple fillarea polygon can be passed via multiple list of x/y,

color/ etc… Last element repeated to match the number of list
passed into x/y

“Secondary” VCS Object: fillarea (2)

• The only fundamental attributes to understand in the secondary
objects are:

viewport vs worldcoordinate

• The viewport values (x1,x2,y1,y2) correspond to area of the
canvas on which this primitive can be drawn, everything outside of
the viewport will be masked.

• The worldcoordinate (wcx1,wcx2,wcy1,wcy2) correspond to the
World Coordinate values at each angle of the viewport, x/y values
of the object are expressed in “worldcoordinate”, by default there
is no distinction since they both go 0,1,0,1.

“Secondary” VCS Object: fillarea (3)

• Here is an example of where the difference can be useful: let’s
admit you let the user chose between 3 different type of template,
and 3 different “Zooms” (magnifications) of an area. And you want
to place a marker/text/rectangle/line at a specific location (station
data for example)

• You’ll have to set the viewport to the same values as
template.data.x1, x2, y1,y2 values and the worldcoordinate to the
same values as your graphicmethod.datawc_x1,x2,y1,y2.

• Then your primitive object x/y coordinate will be in real word
coordinates, and will always be at the right location no matter
which template or graphic method the user picked.

“Secondary” VCS Object: text(combined)

----------Text combined (Tc) member (attribute) listings ----------
Canvas Mode = 0
secondary method = Tc
----------Text Table (Tt) member (attribute) listings ----------

Tt_name = new
font = 1
spacing = 2
expansion = 100
color = 1
priority = 1
string = None
viewport = [0, 1, 0, 1]
worldcoordinate = [0, 1, 0, 1]
x = None
y = None
projection = default
----------Text Orientation (To) member (attribute) listings ----------

To_name = new
height = 14
angle = 0
path = right
halign = left
valign = half

• Passing list to x/y allows multiple text with same attributes

“Secondary” VCS Object: line

----------Line (Tl) member (attribute) listings ----------
Canvas Mode = 0
secondary method = Tl
name = new
type = ['solid']
width = [1.0]
color = [241]
priority = 1
viewport = [0, 1, 0, 1]
worldcoordinate = [0, 1, 0, 1]
x = None
y = None
projection = default

“Secondary” VCS Object: marker

----------Marker (Tm) member (attribute) listings ----------
Canvas Mode = 0
secondary method = Tm
name = new
type = ['dot']
size = [1.0]
color = [241]
priority = 1
viewport = [0, 1, 0, 1]
worldcoordinate = [0, 1, 0, 1]
x = None
y = None
projection = default

1D - “xmgrace”

• User familiar with the “xmgrace” package will be
happy to know that they can now drive it from CDAT.

• X=genutil.xmgrace.init()
• X.plot(data) # X values taken from data axis
• See tutorial for more info

	Displaying Data:�Overview of the �“VCS” module
	History of the VCS module
	VCS Concepts and Terminology
	VCS Concepts and Terminology
	VCS Concepts and Terminology
	Setting up VCS
	VCS First Help (1)
	VCS First Help (2)
	VCS First Help
	Graphic Methods Concepts (1)
	Graphic Methods Concepts (2)
	Graphic Methods Concepts (3)
	Graphic Methods Concepts (4)
	2D - “boxfill”
	2D - “boxfill”, attributes
	2D - create vs get
	2D - Preliminaries
	2D - World Coordinates
	2D - Controlling ratio
	2D - Controlling Labels and Tick Marks
	2D - Axes Transformation (1)
	2D - Axes Transformation (2)
	2D - “linear” boxfill_type
	2D – Colormaps (1)
	2D – Colormaps (2)
	2D - Colormaps from VCDAT
	2D - “log10” boxfill_type
	2D - “custom” boxfill_type
	2D - dealing with colors
	2D - dealing with levels (1)
	2D - dealing with levels (2)
	2D - boxfill: legend
	2D -“isofill”
	2D -“isofill”, attributes
	2D -“isofill”, attributes
	2D - “isoline”
	2D - “isoline”, attributes
	2D - “isoline”, controlling levels
	2D - “isoline”, controlling labels
	2D – “meshfill”
	2D - “meshfill”
	2D - “meshfill” - Description of the “Mesh Array”
	2D – “meshfill” - Description of the “Mesh Array”
	2D - “meshfill”, attributes
	2D - “meshfill”, attributes
	2D - “vector”
	2D - “vector”, attributes
	2D - “vector”, attributes
	1D - “VCS”
	1D - “yxvsx”, attributes
	1D - “VCS” Yxvsx attributes
	1D - “VCS” Xyvsx, Xvsy, scatter
	VCS Templates - Generalities
	VCS Templates - �Text elements and their sources (1)
	VCS Templates�Text elements and their sources (2)
	VCS Templates�Definition of text elements
	VCS Templates�Texttable and textorientation (1)
	VCS Templates�Texttable and textorientation (2)
	VCS Templates�Controlling ticks and labels (1)
	VCS Templates�Controlling ticks and labels (2)
	VCS Templates�Controlling legend and data area
	VCS Templates�Simplifying your life! (1)
	VCS Templates�Simplifying your life! (2)
	VCS �Extra dimensions/Animation
	“Secondary” VCS Objects
	“Secondary” VCS Object: fillarea (1)
	“Secondary” VCS Object: fillarea (2)
	“Secondary” VCS Object: fillarea (3)
	“Secondary” VCS Object: text(combined)
	“Secondary” VCS Object: line
	“Secondary” VCS Object: marker
	1D - “xmgrace”

